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Abstract—We have developed an automated feature de-
tection/classification system, called Genie (GENetic Im-
agery Exploitation), which has been designed to generate
image processing pipelines for a variety of feature detec-
tion/classification tasks. Genie is a hybrid evolutionary al-
gorithm that addresses the general problem of finding fea-
tures of interest in multi-spectral remotely-sensed images.
We describe our system in detail together with experiments
involving comparisons of Genie with several conventional su-
pervised classification techniques, for a number of classifi-
cation tasks using multi-spectral remotely-sensed imagery.
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I. Introduction

LARGE volumes of remotely-sensed multi-spectral data
are being generated from an increasing number of in-

creasingly sophisticated airborne and spaceborne sensor
systems. While there is no substitute for a trained ana-
lyst, exploitation of this data on a large scale requires the
automated extraction of specific features of interest. Cre-
ation and development of task-specific feature-detection al-
gorithms is important, yet can be extremely expensive, of-
ten requiring a significant investment of time and effort by
highly skilled personnel.

Our particular interest is the pixel-by-pixel classifica-
tion of multi-spectral remotely-sensed images to locate and
identify various features of interest. These range from
broad-area features such as forest and open water to man-
made features such as buildings and roads. The large num-
ber of features in which we are interested, together with the
variety of instruments with which we work, make the hand-
coding of suitable feature-detection algorithms impractical.
We are therefore developing a supervised learning approach
that can, using only a few hand-classified training images,
generate image processing pipelines that are capable of dis-
tinguishing features of interest from the background.

In applying general-purpose supervised learning tech-
niques to multi-spectral imagery, the usual approach is to
employ purely spectral feature vectors, formed by the set
of intensity values in each spectral channel for each pixel
in the image. These vectors provide a convenient fixed-
dimensionality space in which conventional classifiers can
often work well. It is clear, however, that spatial relation-
ships (such as texture, proximity, or shape, all of which
are disregarded with purely spectral feature vectors) can
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be very informative in scene classification. Many different
kinds of extra spatial context information could be added
to the spectral information, as additional feature dimen-
sions of the pixel feature vector. The problem is that
there exists a combinatorically vast choice for these ad-
ditional feature vector dimensions; yet it is clear that a
suitable choice of features could make classification much
easier. Unfortunately, this suitable choice is, in general,
application-specific.

It is in order to address just this problem that we have
developed a hybrid evolutionary algorithm called Genie
(GENetic Imagery Exploitation) [2], [3], [4], [5], [6], [7], [8],
that searches through the space of image processing algo-
rithms. Genie is a hybrid in that the evolutionary part of
the program attempts to identify a pipeline of image pro-
cessing operations which transform the raw multi-spectral
data planes into a new set of image planes; these inter-
mediate feature planes are then input to a conventional
supervised classification technique to provide the final clas-
sification results.

The beauty of an evolutionary approach is its flexibility:
if we can derive a fitness measure for a particular problem,
then it might be possible to solve that problem. Many
varied problems have been successfully solved using evolu-
tionary computation, including: optimization of dynamic
routing in telecommunications networks [9], optimizing im-
age processing filter parameters for archive film restoration
[10], designing protein sequences with desired structures
[11] and many others.

When adopting an evolutionary approach, a critical is-
sue is how one should represent candidate solutions in order
that they may be effectively manipulated. We use a genetic
programming (GP) method of representation of solutions,
due to the fact that each individual will represent a pos-
sible image processing algorithm. GP has previously been
applied to image-processing problems, including: edge de-
tection [12], face recognition [13], image segmentation [14]
and feature extraction in remote sensing images [15], [2],
[3]. The work of Daida et al. [15], Brumby et al. [2] and
Theiler et al. [3] is of particular relevance since it demon-
strates that GP can be employed to successfully evolve al-
gorithms for real tasks in remote-sensing applications.

This paper describes our system in detail together
with experiments involving comparisons of Genie with
several conventional supervised classification techniques,
for a number of classification tasks using multi-spectral
remotely-sensed imagery.

The remainder of the paper is organized as follows: Sec-
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tion II describes the Genie system in detail. Section III
describes the conventional supervised classification tech-
niques with which Genie is to be compared. Section IV
describes the data and classification tasks on which the
algorithms are to be tested and compared. Section V de-
scribes the results of the comparisons. Section VI discusses
the results presented in Section V. A summary and con-
clusions are presented in Section VII.

II. The Genie System

Genie employs a classic evolutionary paradigm: a pop-
ulation of is maintained of candidate solutions (chromo-
somes), each composed of interchangeable parts (genes),
and each assessed and assigned a scalar fitness value,
based on how well it performs the desired task. After fit-
ness determination, the evolutionary operators of selection,
crossover and mutation are applied to the population and
the entire process of fitness evaluation, selection, crossover
and mutation is iterated until some stopping condition is
satisfied.

A. Training Data

The environment for each individual in the population
consists of data planes, each of these planes corresponding
to a separate spectral channel in the original image, to-
gether with a weight plane and a truth plane. The weight
plane identifies those pixels to be used in training, while
the truth plane locates the features of interest in the train-
ing data. The data in the weight and truth planes may be
derived from actual ground truth (collected on the ground,
at or near the time the image was taken) or from the best
judgement of an analyst looking at the data. Because col-
lecting ground truth data is so expensive, our system em-
ploys a Java-based tool called Aladdin to assist the ana-
lyst in making judgements about and marking out features
in the data. Through Aladdin, the analyst or user can
view a multi-spectral image in a variety of ways, and can
create training data by painting directly on the image us-
ing a computer mouse. Currently, training data consists of
binary-valued pixels, with these values being either “true”
or “false”. True defines areas where the analyst is confident
that the feature of interest does exist. False defines areas
where the analyst is confident that the feature of interest
does not exist. Pixels within the training image not labeled
as either true or false are not included in the determination
of the fitness of an individual. Fig. 1 shows a screen cap-
ture of an example session. Here the analyst has marked
out golf courses as the particular feature of interest.

B. Encoding Individuals

Each individual chromosome in the population consists
of a fixed-length string of genes . Each gene in Genie cor-
responds to a primitive image processing operation. There-
fore the entire chromosome describes an algorithm consist-
ing of a sequence of primitive image processing operations
[2], [3].

Fig. 1. Aladdin: the graphical interface used by the analyst to create
training data. Note that Aladdin relies heavily on color, which
does not show up well in this image. The light colored patches in
the center-right and upper-right parts of the image are two golf
courses that have been marked up as “true”. Most of the rest
of the image has been marked up as “false”, except for a small
region around the golf courses which has been left unmarked.

B.1 Genes and Chromosomes

A single gene consists of an operator name, plus a vari-
able number of input arguments, specifying from where
input is to come; output arguments, specifying to where
output is to be written; and parameters, modifying the
operator’s function. Different operators require different
numbers of parameters. Parameters may be integer, float-
ing point, or categorical. The operators used inGenie take
one or more distinct image planes as input, and produce
one or more image planes as output. Input can be taken
from any data planes in the training data image cube. Out-
put is written to any of a small number of scratch planes—
temporary workspaces where an image plane can be stored.
Genes can also take input from scratch planes, but only if
that scratch plane has been written to by another gene
positioned earlier in the chromosome sequence.

The image processing algorithm represented by any par-
ticular chromosome can be thought of as a directed acyclic
graph, where the non-terminal nodes are primitive image
processing operations, and the terminal nodes are individ-
ual image planes extracted from the multi-spectral image
used as input. The scratch planes are the ‘glue’ that com-
bines together primitive operations into image processing
pipelines. Traditional GP [16] uses a variable sized (within
limits) tree representation for algorithms. Our representa-
tion differs in that it allows for re-use of values computed
by sub-trees, since many nodes can access the same scratch
plane, i.e., the resulting algorithm is a graph rather than
a tree. It also differs in that the total number of nodes is
fixed, although not all of these may be actually used in the
final graph. Currently, crossover is carried out directly on
the linear representation.

Our notation for genes is most easily illustrated by an
example: the gene [ADDP rD1 rS1 wS2] applies pixel-
by-pixel addition to two input planes, read from data plane
1 and from scratch plane 1, and writes its output to scratch
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plane 2. Any additional required operator parameters are
listed after the input and output arguments.
Our “gene pool” has been restricted to a set of primitive

image processing operators which we consider useful. For
different applications, the user may want to choose differ-
ent sets of primitive operators; for the studies described
here, we used all of our available operators. These include
spectral, spatial, spatio-spectral, logical and thresholding
operators. Table I outlines these operators. For details re-
garding Laws textural operators, the interested reader is
referred to [17], [18].
The set of morphological operators is restricted to

function-set processing morphological operators, i.e. grey-
scale morphological operators having a flat structuring el-
ement. The sizes and shapes of the structuring elements
used by these operators is also restricted to a pre-defined
set of primitive shapes, which includes, square, circle, dia-
mond, horizontal cross and diagonal cross, and horizon-
tal, diagonal and vertical lines. The shape and size of
the structuring element are defined by operator parame-
ters. Other local neighborhood/windowing operators such
as mean, median, etc. specify their kernels/windows in a
similar way. The spectral operators have been chosen to
permit weighted sums, differences and ratios of data and/or
scratch planes.
It should be noted that although all chromosomes have

the same fixed number of genes, the effective length of the
resulting algorithm graph may be smaller than this. For
example, an operator may write to a scratch plane that
is then overwritten by another gene before anything has
a chance to read from it. Genie performs an analysis of
chromosome graphs when they are created and only car-
ries out those processing steps that actually affect the final
result. Therefore, the fixed length of the chromosome acts
as a maximum effective length.

C. Backends

Complete (or “hard”) classification requires that the al-
gorithm produce a single binary-valued output plane. It
would be possible to treat, for example, the final contents of
scratch plane S1 as the output from the algorithm (thresh-
olding of this plane may be required to obtain a binary re-
sult). However, such an approach assigns a privileged role
to a particular scratch plane label (in this case S1), which
need not be respected by the algorithm. Therefore we have
adopted a hybrid approach which applies a conventional su-
pervised classifier to the set of scratch planes to produce
the final answer plane. We have found this approach to be
advantageous.
To do this, we first select a subset of the scratch planes

and data planes to be answer planes. We then apply a
more conventional supervised classification technique to
these answer planes.
Typically we would use the provided training data and

the answer planes to derive the Fisher Linear Discrimi-
nant [19], which is the linear combination of the answer
planes that maximizes the mean separation in spectral
terms between those pixels marked up as “true” and those

pixels marked up as “false”, normalized by the “total vari-
ance” in the projection defined by the linear combination.
The output of the discriminant-finding phase is a multi-
valued (grey-scale) image. This is then reduced to a bi-
nary image by finding the threshold value that maximizes
the fitness as described in the following section.

D. Fitness Evaluation

The fitness of a candidate solution is given by the degree
of agreement between the final binary output plane and the
training data. This degree of agreement is determined by
the weighted Hamming distance between the final binary
output of the algorithm and the training data. In a more
formal/mathematical context, if we denote the detection
rate (fraction of “feature” pixels classified correctly over
the entire scene) as Rd and the false alarm rate (fraction
of “non-feature” pixels classified incorrectly over the entire
scene) as Rf , and the fitness of a candidate solution as F ,
then we define the fitness as:

F = 500(Rd + (1 −Rf )) (1)

Thus, a fitness of 1000 indicates a “perfect” classification
result: i.e. none of those pixels in the training set have been
classified incorrectly. This fitness score weights getting all
the “feature” pixels correct equivalently to getting all the
“non-feature” pixels correct.

E. Software Implementation

The evolutionary algorithm code has been implemented
in object-oriented Perl. This provides a convenient envi-
ronment for the string manipulations required by the evo-
lutionary operations and simple access to the underlying
operating system (Linux). Chromosome fitness evaluation
is the computationally intensive part of the evolutionary
process and we currently farm this job out to a separate
process running RSI’s IDL [20] language and image process-
ing engine. IDL currently does not have all the image pro-
cessing operators of interest to us, so we have implemented
additional operators in C that can be called from within
the IDL environment. Within IDL, individual genes corre-
spond to single primitive image operators, which are coded
as IDL procedures, with a chromosome representation be-
ing coded as an IDL batch executable. In our present im-
plementation, an IDL session is opened at the start of a
run and communicates with the Perl code via a two-way
UNIX pipe. This pipe is a low-bandwidth connection. It
is only the IDL session that needs to access the input and
training data (possibly hundreds of Megabytes), requiring
a high-bandwidth connection. The Aladdin training data
mark-up tool was written in Java. Fig. 2 shows the soft-
ware architecture of the system.

III. Conventional Supervised Classification

Many implementations of standard supervised classifiers
exist. One of the most widely used remote-sensing soft-
ware packages is the ENvironment for Visualizing Imagery
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Image Inputs/
Gene Processing Outputs/

Abbreviation Operation Params Notes

ADDP Add planes 2/1/0 Basic mathematical operations. ADDS adds a scalar, which may
be negative, to its input. DIFF is like SUBP but outputs the
absolute values. NDI is like SUBP, but divides the result by the
sum of its two inputs. MULTS scales its input by a scalar, which
by default is positive. LINSCL is like MULTS but takes an extra
param which is added onto the scaled input. LINCOMB outputs
a linear combination of its two inputs, in proportion specified by
its one parameter, which takes a value between 0 and 1.

ADDS Add scalar 1/1/1
SUBP Subtract planes 2/1/0
DIFF Absolute difference 2/1/0
NDI Normalized difference 2/1/0

MULTS Multiply by scalar 1/1/1
NEG Negate plane 1/1/0

MULTP Multiply planes 2/1/0
SQRT Square root 1/1/0
SQR Square 1/1/0

LINSCL Linear scale 1/1/2
LINCOMB Linear combination 2/1/1

MIN Minimum 2/1/0 Logical operations. MIN and MAX perform pixel-wise minimum
and maximum, equivalent to AND and OR for binary input.
IFLTE outputs its third input wherever the first input is less
than its second input, and its fourth output elsewhere.

MAX Maximum 2/1/0
IFLTE ‘If less than else’ 4/1/0

CLIP HI Clip high 1/1/1 Thresholding operations. CLIP HI truncates any pixel values
above a value set by its param. CLIP LO does the converse.
THRESH sets all values below its threshold param to 0, and all
those above to dataScale.

CLIP LO Clip low 1/1/1
THRESH Threshold 1/1/1

SAVAR Spectral angle variance 2-16/1/2 Spectral angle operations. SAVAR and SADIST look at two
circular neighborhood regions around each pixel, of size defined
by their two params. SAVAR returns the difference between the
variance of the spectral angles of the pixels in the two regions.
SADIF returns the difference between the mean spectral angle of
both regions. SADIST returns the spectral angle difference
between each pixel and the vector defined by its params.
SANORM normalizes the vector defined by its inputs to have a
magnitude equal to dataScale.

SADIF Spectral angle difference 2-16/1/2
SADIST Spectral angle distance 2-10/1/2-10
SANORM Normalize spectral vector 2-10/2-10/0

QTREG Region Size related to Statistics 1/3/1 QTREG Determines the region size (in log base 2) around each
pixel for which the normalized variance per pixel standard of the
square region first reaches a given threshold. Also returns planes
with the linear fit slope and offset of the variance as a function
of region scale for each pixel

R5R5 Law’s texture measure 1/1/0 Neighborhood operations. In general, all these operations take a
single plane as input and produce a single output plane. The
output at each pixel is determined by looking at the pixel’s
neighborhood. R5R5, LAWB, LAWD, LAWF and LAWH are
widely-used texture measures, developed by Law, that return
zero if the neighborhood contains all the same value of pixel, and
some other value otherwise, depending upon the distribution of
pixel values. R5R5 is corresponds to Law’s R5T × R5 5× 5
operator. The others are 3× 3 operators, corresponding to Law’s
S3T × L3, E3T × E3, L3T × S3 and S3T × S3 operators
respectively. Most of the other operators are familiar image
processing or morphological operators, whose description can be
found in any good book on image processing. Most take two
parameters which give the size and shape of a structuring
element defining the neighborhood to which the operator is
applied. ASF stands for ‘Alternating Sequential Filter’.
MB EDGE takes an additional parameter defining a threshold
for edge strength to be looked for. The single parameter for
H DOME and H BASIN defines the pixel value offset used by
these operators.

LAWB Law’s texture measure 1/1/0
LAWD Law’s texture measure 1/1/0
LAWF Law’s texture measure 1/1/0
LAWH Law’s texture measure 1/1/0

LAPLAC3 3x3 Laplacian 1/1/0
LAPLAC5 5x5 Laplacian 1/1/0

MORPH LAPLAC Morph. Laplacian 1/1/2
ISO GRAD Isotropic gradient 1/1/0

MEAN Mean 1/1/1
VARIANCE Variance 1/1/2
SKEWNESS Skewness 1/1/2
KURTOSIS Kurtosis 1/1/2

SKEW COEFF Skewness coefficient 1/1/2
KURT COEFF Kurtosis coefficient 1/1/2

SD Standard deviation 1/1/2
RANGE Morphological Gradient 1/1/2
MEDIAN Median 1/1/2
EROD Erode 1/1/2
DIL Dilate 1/1/2

OPEN Open 1/1/2
CLOS Close 1/1/2
OPCL Open-close 1/1/2
CLOP Close-open 1/1/2

ASF CLOP ASF Close-open 1/1/2
ASF OPCL ASF Open-close 1/1/2
POS TH Positive top hat 1/1/2
NEG TH Negative top hat 1/1/2
OP REC Open with reconstruction 1/1/2
CL REC Close with reconstruction 1/1/2
H DOME H-dome 1/1/1
H BASIN H-basin 1/1/1
MB EDGE Canny edge detector 1/1/2

TABLE I

The primitive image processing operators (genes) used in Genie and what they do. Space precludes a complete description of

the details of the more complex operators, but this table gives the general picture of what kinds of operators are in Genie.
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Fig. 2. Software Architecture of the System.

(ENVI) [1]. Supervised classification techniques provided
as part of the ENVI package were used in the comparison
experiments with Genie. Currently Genie is set up to be
able to classify every pixel in its input data into one of two
classes: “feature” and “non-feature”. The normal mode of
operation of the ENVI supervised classifiers is to use train-
ing data for the one “true” class: i.e. the feature of inter-
est. The ENVI classifier is then used to classify the input
image into “feature” or “unclassified”. The user adjusts
the parameters of the particular supervised classifier in or-
der to attain optimal performance, with respect to feature
identification. The one exception to this is the Maximum
Likelihood classifier, where it is necessary to have more
than one class in the training data. In this case we used
the “feature” and “non-feature” classes and the Maximum
Likelihood classifier classified every pixel in the input data
into one or other of these two classes, with no “unclassi-
fied” pixels being allowed. For applying the ENVI-supplied
classifiers to out-of-training-sample data, the training data
(reference spectra) used in the training was provided, to-
gether with the parameters that gave optimal performance
on the training data. For the GENIE case, it was simply
a case of applying the algorithms found by GENIE to the
out-of-training-sample data (including the linear discrimi-
nant and threshold found during training).

Supervised classification is used to categorize data into
classes corresponding to user-defined training classes. The
training classes for the ENVI supervised classifiers were ob-
tained from the user-defined training data produced using
Aladdin. The “truth” and “weight” planes were read into
ENVI and used in the definition of suitable regions of inter-
est for the required training classes: “true” and/or “false”,
to be used in the subsequent supervised classification.

The following ENVI-supplied supervised classification
techniques were used in the comparison experiments:

• Minimum distance
• Maximum likelihood

• Mahalanobis distance
• Spectral angle mapper
• Binary encoding

A. Minimum Distance

The minimum distance supervised classification tech-
nique [21], [22] calculates the mean pixel vector of the “fea-
ture” class. It assigns new pixels to the “feature” class if
the Euclidean distance from that pixel to the mean is less
than a user-defined threshold, or to “non-feature” other-
wise.

B. Maximum Likelihood

Maximum likelihood classification [21], [22] is the most
common supervised classification method used with remote
sensing data (as stated in [22]). The maximum likeli-
hood classifier models the distributions of the “feature”
and “non-feature” classes as separate multivariate normal
distributions. New pixels are assigned to the class that had
the highest probability of generating that pixel.

C. Mahalanobis Distance

The Mahalanobis distance technique [21], [22] is very
similar to the maximum likelihood classifier, but with the
simplification that all classes are modelled as having iden-
tical covariance matrices (which defines the shape and ori-
entation of the normal distribution). In the one class case,
we compare the probability that a new pixel was generated
by the “feature” class, to a user-defined threshold, in order
to decide to which class that pixel belongs.

D. Spectral Angle Mapper

The spectral angle mapper (SAM) technique [21], [23]
is motivated by the observation that changes in illumina-
tion caused by shadows, slope variation, sun position, light
cloud, etc., approximately only alter the magnitude of a
pixel’s vector, rather than the direction. Therefore we can
eliminate these effects by normalizing all pixel vectors to
unit magnitude and then looking at the angle between a
given pixel and the mean vector for the “feature” class.
Pixels are assigned to the “feature” class if this angle is
less than a user-defined threshold.

E. Binary Encoding

Binary encoding classification [21], [22], [24] encodes the
data and reference spectra into ones and zeros, based on
whether a particular band value lies above or below the
spectrum mean. The comparison between the encoded
reference spectrum with the encoded data spectra is per-
formed using a Boolean logic exclusive OR function. A user
specifies the minimum fraction of bands that must match
between the encoded reference spectrum and the data spec-
tra. Pixels that do not meet this criterion are labeled as
“non-feature”.
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IV. Experimental Data and Classification Tasks

A. Data Used in the Experiments

The remotely-sensed images referred to in this paper
were derived from the Airborne Visible and InfraRed
Imaging Spectrometer (AVIRIS) [25], a sensor developed
and operated by the NASA Jet Propulsion Laboratory.
The AVIRIS sensor collects data in 224 contiguous, rel-
atively narrow (10 nm), uniformly-spaced spectral chan-
nels. AVIRIS is an airborne sensor and spatial resolution
can vary from a few meters to 20 meters. The studies re-
ported here use a reduced number of relatively wide spec-
tral bands. Several of the authors are involved with a new
remote sensing satellite called the Multispectral Thermal
Imager (MTI) [26]. The MTI satellite was launched in
March 2000 and collects data in 15 spectral bands. Ten
of these bands sample wavelengths between 0.4 and 2.4
microns, a region covered by the AVIRIS instrument. As
test data to develop analysis codes, AVIRIS data were con-
volved with the MTI spectral filter functions to produce
simulated MTI data. This 10-band simulated data was
used for development of both conventional remote sensing
algorithms and for Genie development.

The images displayed here are false-color images (which
have then been converted to grey-scale in the printing pro-
cess). The color mappings used are the same for all origi-
nal image data shown. The particular color mappings used
here involve averaging MTI bands A (0.45–0.52 µm) and
B (0.52–0.60 µm) for the blue component, bands C (0.62–
0.68 µm) and D (0.76–0.86 µm) for the green component
and bands E (0.86–0.89 µm) and F (0.91–0.97 µm) for the
red component. In addition, the images have been contrast
enhanced. The choice of color mappings was arbitrary, in
that it was a personal decision made by the analyst, made
in order to best “highlight” the feature of interest, from
his/her perspective and thus enable him/her to provide the
best possible training data. This choice of color-mappings,
together with a contrast-enhancement tool, are important
and very useful features of Aladdin.

B. Classification Tasks

We chose four different features of interest:

• Roads
• Golf Courses
• Urban Areas
• Clouds

These features were chosen because of their particular
attributes in multi-spectral data. The features were con-
sidered a good test of a supervised classification technique
due to the different levels of difficulty they posed for these
techniques. Clouds are relatively easy, and mostly spec-
tral; urban areas encompass a land-cover distinction; roads
are easy for the eye to find, but notoriously difficult for
automated algorithms; golf courses require a combination
of spectral and spatial information to disambiguate them
from other similarly-vegetated areas (e.g. lawns).

We set the various supervised classification techniques
the task of distinguishing these features within several
scenes of the 10-channel multi-spectral data as described
above. For each feature of interest three separate scenes
had training data marked-up using the Aladdin tool. This
provided “ground truth” for training data and for assess-
ing the performance of the classification scheme on out-
of-training-sample data. We employed a cross-validation
scheme where, for each feature, we trained a classifier sep-
arately on the three marked-up scenes, and then for each
scene, applied the resulting classifier to the two remaining
out-of-sample scenes. Genie was run, with a population
of 100 individuals, for 500 generations, or until a (perfect
score) fitness of 1000 was achieved.
An example of an image plus associated training data is

shown in Fig. 3. This figure shows the false-color image for
one of the scenes used for the “urban area” feature classi-
fication, and the associated training data. In the training
data image the white pixels correspond to the places on the
image where the feature is asserted to be, the grey pixels
to where the feature is asserted not to be, and the black
pixels correspond to places where no assertion is made.

V. Comparison Experiments

For the training phase, we ran GENIE and the ENVI-
supplied classifiers on the training data. For GENIE, the
result of this training phase is an image processing pipeline
which can be applied to and tested on other data. To ap-
ply the ENVI-supplied classifiers to out-of-training-sample
data it was necessary to save the regions of interest of the
marked-up training classes and provide them as the ref-
erence spectra for application of the classifiers to out-of-
training-sample data.
For an objective comparison we measured the fitness,

detection rate and false-alarm rate of all the classifiers on
the training data and out-of-training-sample data.
Due to the limitations of space we cannot show all the

qualitative and quantitative results for all the experiments
undertaken. However, we can provide the quantitative re-
sults, in terms of the average performance of the different
classification algorithms for each feature sought for all clas-
sification tasks set.
Table II shows the quantitative results of the compar-

ison between the Genie algorithm output and the ENVI
algorithms’ output on the training data for all the features.
The bottom 3 rows of the table show the average, for each
classification technique, across all features sought.
Table III shows the quantitative results of the compar-

ison between the Genie algorithm output and the ENVI
algorithms’ output on the out-of-training-sample data for
all the features. Again, the last 3 rows of the table show the
average, for each classification technique, across all features
sought.
Another interesting and useful way of presenting the data

in Tables II and III is to show the ranking of the various
techniques, with respect to fitness, for the various features
sought. Table IV shows the ranking of the supervised clas-
sification algorithms for the training data, for each feature
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(a) (b)

Fig. 3. (a) False-color images of one of the scenes used to produce the training data for “Urban Areas” (urban1) (b) Training data provided
for the training scene for “Urban Areas” (White = Feature, Grey = Not Feature, Black = No Assertion)

GENIE Min. Dist. Mahal. Dist. Max. Likeli. S.A.M. Bin. Enc.
Fitness 963.3 781.2 865.9 921.1 803.9 677.5

Roads D.R. (%) 96.61 78.63 83.11 91.62 82.93 82.00
F.A.R. (%) 3.95 22.40 10.03 7.40 22.14 46.50
Fitness 998.3 945.0 947.6 966.2 915.4 820.1

Golf D.R. (%) 99.68 95.16 93.84 96.21 92.73 78.72
F.A.R. (%) 0.00 6.17 4.32 2.97 9.64 14.71
Fitness 998.9 694.7 861.6 963.6 636.3 580.4

Urban D.R. (%) 99.85 58.55 80.34 95.67 75.03 83.59
F.A.R. (%) 0.07 19.61 8.03 2.94 47.77 67.52
Fitness 999.9 975.7 946.7 997.9 979.4 760.2

Clouds D.R. (%) 99.99 96.41 94.21 99.91 98.18 55.59
F.A.R. (%) 0.00 1.27 4.86 0.33 2.29 3.55
Fitness 990.1 849.1 905.5 962.2 833.8 709.5

Average D.R. (%) 99.03 82.19 87.87 95.86 87.22 74.98
F.A.R. (%) 1.01 12.36 6.81 3.41 20.46 33.07

TABLE II

Comparison of Genie’s Evolved Algorithm with ENVI Algorithms, on training data (D.R. = Detection Rate, F.A.R. = False

Alarm Rate)

sought. Table V shows the overall ranking for the classi-
fication algorithms, averaged over all the features for the
training data. Table VI shows the ranking for the out-of-
training-sample data, for each feature. Table VII shows the
overall ranking for the classification algorithms, averaged
over all the features for the out-of-training-sample data.

In order to illustrate the results of these classification
techniques on training and out-of-training-sample data, the
following images are provided (Figs. 4, 5, 6, 7). Again,
limitations of space preclude us from providing a complete
set of images for every experiment. Here we show an ex-
ample of Genie and the best-performing ENVI classifier,
applied to a training set, and an example of Genie and
the best-performing ENVI classifier applied to some out-

of-training-sample data.

The “short” (redundant genes stripped out) version of
the chromosome (image processing pipeline) found by Ge-
nie for the golf course-finding task described above is de-
tailed below:

[QTREG rD1 wS5 wS3 wS1 0.05][LAWC rD7 wS2][MEAN
rS2 wS2 3 0][VARIANCE rD7 wS4 3 0][CLOP rS2
wS2 3 0][RANGE rD10 wS1 3 0][OP REC rS4 wS4 3
0][ASF OPCL rD2 wS3 3 0]

The graphical representation of this pipeline is illustrated
in Fig. 8. Note that the circledDs represent the input data
planes and the circled Ss represent the answer planes that
are input to the back-end classifier (Fisher Linear Discrim-
inant plus thresholding), to produce the final classification



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, MONTH 2001 107

GENIE Min. Dist. Mahal. Dist. Max. Likeli. S.A.M. Bin. Enc.
Fitness 763.2 559.9 500.0 611.2 566.0 587.1

Roads D.R. (%) 60.71 27.54 0.00 62.25 30.29 72.94
F.A.R. (%) 7.36 15.57 0.00 40.02 17.09 55.51
Fitness 739.8 584.8 500.0 553.1 696.5 572.9

Golf D.R. (%) 61.60 42.34 0.00 10.93 58.76 51.16
F.A.R. (%) 13.65 25.39 0.00 0.31 19.46 36.57
Fitness 813.5 586.2 514.6 569.4 499.1 521.9

Urban D.R. (%) 66.32 27.36 2.93 65.86 50.67 70.18
F.A.R. (%) 3.63 10.11 0.02 51.97 50.51 65.80
Fitness 978.0 968.6 632.0 701.7 975.3 727.1

Clouds D.R. (%) 97.43 95.38 28.62 99.97 97.28 48.85
F.A.R. (%) 1.82 1.67 2.22 59.64 2.23 3.43
Fitness 823.6 674.9 536.6 608.8 684.2 602.3

Average D.R. (%) 71.51 48.16 7.89 59.75 59.25 60.78
F.A.R. (%) 6.62 13.18 0.56 37.99 22.32 40.33

TABLE III

Comparison of Genie’s Evolved Algorithm with ENVI Algorithms, on out-of-training-sample data (D.R. = Detection Rate,

F.A.R. = False Alarm Rate)

Roads Golf Urban Clouds
Rank Classifier Fitness Classifier Fitness Classifier Fitness Classifier Fitness
1st GENIE 963.3 GENIE 998.3 GENIE 998.9 GENIE 999.9
2nd Max. Likeli. 921.2 Max. Likeli. 966.2 Max. Likeli. 963.6 Max. Likeli. 997.9
3rd Mahal. Dist. 865.9 Mahal. Dist. 947.6 Mahal. Dist. 861.6 S.A.M. 979.4
4th S.A.M. 803.9 Min. Dist. 945.0 Min. Dist. 694.7 Min. Dist. 975.7
5th Min. Dist. 781.2 S.A.M. 915.4 S.A.M. 636.3 Mahal. Dist. 946.7
6th Bin. Encoding 677.5 Bin. Encoding 820.1 Bin. Encoding 580.4 Bin. Encoding 760.2

TABLE IV

Ranking, with respect to fitness, of supervised classification algorithms, on training data

Roads Golf Urban Clouds
Rank Classifier Fitness Classifier Fitness Classifier Fitness Classifier Fitness
1st GENIE 763.2 GENIE 739.8 GENIE 813.5 GENIE 978.0
2nd Max. Likeli. 611.2 S.A.M. 696.5 Min. Dist. 586.2 S.A.M. 975.3
3rd Bin. Encoding 587.1 Min. Dist. 584.8 Max. Likeli. 569.4 Min. Dist. 968.6
4th S.A.M. 566.0 Bin. Encoding 572.9 Bin. Encoding 521.9 Bin. Encoding 727.1
5th Min. Dist. 559.9 Max. Likeli. 553.1 Mahal. Dist. 514.6 Max. Likeli. 701.7
6th Mahal. Dist. 500.0 Mahal. Dist. 820.1 S.A.M. 499.1 Mahal. Dist. 632.0

TABLE VI

Ranking, with respect to fitness, of supervised classification algorithms, on out-of-training-sample data

result. It can be seen that this image processing pipeline
has only used 4 of the available 10 data planes as input:
data planes D2, D4, D7 and D10. These correspond to
the MTI bands B (0.52–0.60 µm: Green), D (0.76–0.86
µm: NIR), G (0.99–1.04 µm: NIR) and O (2.08–2.35 µm:
SWIR) respectively. Genie’s choice of input data bands is
not surprising, given the task. The algorithm is using the
green band, as well as two near-infrared bands and a short-
wave infra-red band. Vegetation is known to be evident in

the two near-infrared bands Genie selected and it is well
known that golf courses are usually quite green. Genie
produced a solution with five answer planes, and the back-
end produced a linear combination of those planes, along
with a threshold value, to give a binary classification. Of
these five answer planes the most important were S1, S2
and S4; using only those planes we could still achieve the
same fitness value, on the training data, as when all the
answer planes were used. For the out-of-training-sample
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(a) (b)

Fig. 4. (a) False-color images of one of the scenes used to produce the training data for “Golf Courses” (golf3) (b) Training data provided
for the training scene for “Golf Courses” (White = Feature, Grey = Not Feature, Black = No Assertion)

(a) (b)

Fig. 5. (a) GENIE results on training data: Fitness = 999.2 (b) Best ENVI classifier for the particular training scene (Minimum Distance):
Fitness = 957.4

case, using these 3 answer planes instead of all five also
produced comparable performances to when all 5 answer
planes were used. It is therefore fair to say that answer
planes S3 and S5, in this case, perform no useful function.
The outputs of these useful answer planes, as can be seen
from Fig. 8, are derived from the NIR and SWIR bands.
In this case we see that, perhaps surprisingly, the green
band is actually not contributing anything useful.

In an interesting parallel to ”junk DNA” in natural chro-
mosomes, the final chromosomes produced by Genie often
exhibit some redundancy, i.e. genes and answer planes that
do not significantly contribute to the answer. While these
”junk genes” do not affect the functionality of the chro-
mosome, they can make it harder to understand how the
chromosome works. We have therefore developed a sim-
ple post-run pruning process that removes junk genes and

ineffective answer planes from the final solution if this is
required.

VI. Discussion

Genie out-performed all the other classification tech-
niques on all features on both training data and out-of-
training-sample data. For the training data, the gap, with
respect to fitness, between Genie’s performance and the
best of the other techniques was much less than for the out-
of-training-sample case. This suggests that Genie is sig-
nificantly better at generalizing than the other techniques
compared here. An interesting observation is that the best
of the other techniques on the training data did not nec-
essarily guarantee it to be the best of the other techniques
on the out-of-training-sample data. This indicates the sen-
sitivity of these techniques to training data and confirms
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(a) (b)

Fig. 6. (a) False-color images of one of the scenes used to produce training data for “Golf Courses” (golf1) (b) Training data provided for
the training scene for “Golf Courses” (White = Feature, Grey = Not Feature, Black = No Assertion)

(a) (b)

Fig. 7. (a) GENIE results on out-of-training-sample data: Fitness = 946.9 (b) Best ENVI classifier (for particular training scene) on
out-of-training-sample data (Spectral Angle Mapper): Fitness = 856.7

Genie’s superior generalization abilities.

One issue to be addressed is training time. At present
Genie requires the testing of potentially thousands of can-
didate algorithms on the training data. Depending on the
size of the data, this can take hours to complete. Therefore,
Genie can take considerably longer to train than the other
techniques. It should be noted, though, that the result of
Genie’s training is an image processing algorithm that can
be applied to other data with times comparable to that of
the other techniques’ application to out-of-training-sample
data. If training time is of great importance a user would
perhaps have to weigh up the potentially longer training
times of Genie against its potentially far better perfor-
mance. A few hours is really a small price to pay for a fea-
ture identification algorithm that is customized not only to
the specific feature, but also to the specific data set. An-

other point to consider is that being a population-based op-
timization technique, Genie lends itself well to paralleliza-
tion, which can dramatically reduce training time. Some
experiments have been carried out to demonstrate this [6].

Although traditional classification techniques, as com-
pared here, only use spectral information, it is possible to
enable these techniques to use spatial information as well.
This can be done by applying some spatial operators to
each plane in the input multispectral data and then com-
bining these new processed data planes with the raw data
planes and providing both as input to the supervised clas-
sifiers. We undertook some experiments where we applied
a number of morphological smoothings at different scales
to the input data and combined this with the original data.
What we found was that this information did help the con-
ventional supervised classifiers in achieving superior per-
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Fig. 8. Image processing pipeline discovered by Genie for finding golf courses

Rank Classifier Fitness
1st GENIE 990.1
2nd Max. Likeli. 962.2
3rd Mahal. Dist. 905.5
4th Min. Dist. 849.1
5th S.A.M. 833.8
6th Bin. Encoding 709.5

TABLE V

Overall ranking, with respect to fitness, of supervised

classification algorithms, on training data

formance compared to the same classifiers applied to just
the raw data. However, it was still considerably below the
performance of Genie on the original data. Also, the im-
proved performance attained was only on the training data.
The classifiers actually performed worse on out-of-training-
sample data (i.e., they were less robust). Obviously, if one
were to adopt this approach, the choice of which spatial
operators to apply is very important and the search space
in this regard is immense. If one considers a scenario where
some sophisticated technique is used to search the space for
the optimal combination of spatial operators, one is enter-
ing the arena in which Genie is designed to function.

VII. Conclusions

An automated feature detection/classification system
has been described. In experiments designed to com-
pareGenie’s performance with traditional supervised tech-
niques, Genie shows better performance than all the other

Rank Classifier Fitness
1st GENIE 823.6
2nd S.A.M. 684.2
3rd Min. Dist. 674.9
4th Max. Likeli. 608.9
5th Bin. Encoding 602.3
6th Mahal. Dist. 536.7

TABLE VII

Overall ranking, with respect to fitness, of supervised

classification algorithms, on out-of-training-sample data

techniques studied here, on both training data and out-of-
training-sample data. A great deal of Genie’s superiority
can be attributed to the fact that it is capable of very nat-
urally combining information from both the spectral and
spatial domain, while the more traditional techniques do
not provide a good way to make those combinations.
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